Combining Bayesian and Support Vector Machines Learning to automatically complete Syntactical Information for HPSG-like Formalisms

نویسندگان

  • Manolis Maragoudakis
  • Katia Kermanidis
  • Nikos Fakotakis
  • George K. Kokkinakis
چکیده

Learning Bayesian Belief Networks (BBN) from corpora and incorporating the extracted inferring knowledge with a Support Vector Machines (SVM) classifier has been applied to the automatic acquisition of verb subcategorization frames for Modern Greek. We have made use of minimal linguistic resources, such as basic morphological tagging and phrase chunking, to demonstrate that verb subcategorization, which is of great significance for developing robust natural language human computer interaction systems, could be achieved using large corpora, without having any general-purpose syntactic parser at all. Moreover, by taking advantage of the plethora in unlabeled data found in text corpora in addition to some available labeled examples, we overcome the expensive task of annotating the whole set of training data and the performance of the subcategorization frames learner is increased. We argue that a classifier generated from BBN and SVM is well suited for learning to identify verb subcategorization frames. Empirical results will support this claim. Performance has been methodically evaluated using two different corpora, one balanced and one domain-specific in order to determine the unbiased behavior of the trained models. Limited training data are proved to endow with satisfactory results. We have been able to achieve precision exceeding 90% on the identification of subcategorization frames which were not known beforehand. The obtained valid frames have been used to fill out the subcategorization field of verb entries in an HPSG-like lexicon using the LKB grammar development environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002